Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Clin Cancer Res ; 29(8): 1515-1527, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441795

RESUMO

PURPOSE: PARP inhibitors have become the standard-of-care treatment for homologous recombination deficient (HRD) high-grade serous ovarian cancer (HGSOC). However, not all HRD tumors respond to PARPi. Biomarkers to predict response are needed. [18F]FluorThanatrace ([18F]FTT) is a PARPi-analog PET radiotracer that noninvasively measures PARP-1 expression. Herein, we evaluate [18F]FTT as a biomarker to predict response to PARPi in patient-derived xenograft (PDX) models and subjects with HRD HGSOC. EXPERIMENTAL DESIGN: In PDX models, [18F]FTT-PET was performed before and after PARPi (olaparib), ataxia-telangiectasia inhibitor (ATRi), or both (PARPi-ATRi). Changes in [18F]FTT were correlated with tumor volume changes. Subjects were imaged with [18F]FTT-PET at baseline and after ∼1 week of PARPi. Changes in [18F]FTT-PET uptake were compared with changes in tumor size (RECISTv1.1), CA-125, and progression-free survival (PFS). RESULTS: A decrease in [18F]FTT tumor uptake after PARPi correlated with response to PARPi, or PARPi-ATRi treatment in PARPi-resistant PDX models (r = 0.77-0.81). In subjects (n = 11), percent difference in [18F]FTT-PET after ∼7 days of PARPi compared with baseline correlated with best RECIST response (P = 0.01), best CA-125 response (P = 0.033), and PFS (P = 0.027). All subjects with >50% reduction in [18F]FTT uptake had >6-month PFS and >50% reduction in CA-125. Utilizing only baseline [18F]FTT uptake did not predict such responses. CONCLUSIONS: The decline in [18F]FTT uptake shortly after PARPi initiation provides a measure of drug-target engagement and shows promise as a biomarker to guide PARPi therapies in this pilot study. These results support additional preclinical mechanistic and clinical studies in subjects receiving PARPi ± combination therapy. See related commentary by Liu and Zamarin, p. 1384.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Projetos Piloto , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Biomarcadores , Tomografia por Emissão de Pósitrons/métodos
2.
J Am Chem Soc ; 144(51): 23685-23690, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36523116

RESUMO

The development of synthetic strategies for the preparation of bioisosteric compounds is a demanding undertaking in medicinal chemistry. Numerous strategies have been developed for the synthesis of bicyclo[1.1.1]pentanes (BCPs), bridge-substituted BCPs, and bicyclo[2.1.1]hexanes. However, progress on the synthesis of bicyclo[3.1.1]heptanes, which serve as meta-substituted arene bioisosteres, has not been previously explored. Herein, we disclose the first photoinduced [3σ + 2σ] cycloaddition for the synthesis of trisubstituted bicyclo[3.1.1]heptanes using bicyclo[1.1.0]butanes and cyclopropylamines. This transformation not only uses mild and operationally simple conditions but also provides unique meta-substituted arene bioisosteres. The applicability of this method is showcased by simple derivatization reactions.


Assuntos
Compostos Bicíclicos com Pontes , Heptanos , Compostos Bicíclicos com Pontes/química , Heptanos/química , Reação de Cicloadição , Hexanos/química , Butanos
3.
Commun Biol ; 5(1): 1260, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396952

RESUMO

Astatine-211-parthanatine ([211At]PTT) is an alpha-emitting radiopharmaceutical therapeutic that targets poly(adenosine-diphosphate-ribose) polymerase 1 (PARP1) in cancer cells. High-risk neuroblastomas exhibit among the highest PARP1 expression across solid tumors. In this study, we evaluated the efficacy of [211At]PTT using 11 patient-derived xenograft (PDX) mouse models of high-risk neuroblastoma, and assessed hematological and marrow toxicity in a CB57/BL6 healthy mouse model. We observed broad efficacy in PDX models treated with [211At]PTT at the maximum tolerated dose (MTD 36 MBq/kg/fraction x4) administered as a fractionated regimen. For the MTD, complete tumor response was observed in 81.8% (18 of 22) of tumors and the median event free survival was 72 days with 30% (6/20) of mice showing no measurable tumor >95 days. Reversible hematological and marrow toxicity was observed 72 hours post-treatment at the MTD, however full recovery was evident by 4 weeks post-therapy. These data support clinical development of [211At]PTT for high-risk neuroblastoma.


Assuntos
Neuroblastoma , Humanos , Animais , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Modelos Animais de Doenças
4.
Clin Cancer Res ; 28(18): 4146-4157, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35861867

RESUMO

PURPOSE: [131I]meta-iodobenzylguanidine ([131I]MIBG) is a targeted radiotherapeutic administered systemically to deliver beta particle radiation in neuroblastoma. However, relapses in the bone marrow are common. [211At]meta-astatobenzylguanidine ([211At] MABG) is an alpha particle emitter with higher biological effectiveness and short path length which effectively sterilizes microscopic residual disease. Here we investigated the safety and antitumor activity [211At]MABG in preclinical models of neuroblastoma. EXPERIMENTAL DESIGN: We defined the maximum tolerated dose (MTD), biodistribution, and toxicity of [211At]MABG in immunodeficient mice in comparison with [131I]MIBG. We compared the antitumor efficacy of [211At]MABG with [131I]MIBG in three murine xenograft models. Finally, we explored the efficacy of [211At]MABG after tail vein xenografting designed to model disseminated neuroblastoma. RESULTS: The MTD of [211At]MABG was 66.7 MBq/kg (1.8 mCi/kg) in CB17SC scid-/- mice and 51.8 MBq/kg (1.4 mCi/kg) in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Biodistribution of [211At]MABG was similar to [131I]MIBG. Long-term toxicity studies on mice administered with doses up to 41.5 MBq/kg (1.12 mCi/kg) showed the radiotherapeutic to be well tolerated. Both 66.7 MBq/kg (1.8 mCi/kg) single dose and fractionated dosing 16.6 MBq/kg/fraction (0.45 mCi/kg) × 4 over 11 days induced marked tumor regression in two of the three models studied. Survival was significantly prolonged for mice treated with 12.9 MBq/kg/fraction (0.35 mCi/kg) × 4 doses over 11 days [211At]MABG in the disseminated disease (IMR-05NET/GFP/LUC) model (P = 0.003) suggesting eradication of microscopic disease. CONCLUSIONS: [211At]MABG has significant survival advantage in disseminated models of neuroblastoma. An alpha particle emitting radiopharmaceutical may be effective against microscopic disseminated disease, warranting clinical development.


Assuntos
Astato , Neuroblastoma , 3-Iodobenzilguanidina/efeitos adversos , Partículas alfa/uso terapêutico , Animais , Astato/uso terapêutico , Guanidinas/uso terapêutico , Humanos , Radioisótopos do Iodo/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/radioterapia , Compostos Radiofarmacêuticos/efeitos adversos , Distribuição Tecidual , Células Tumorais Cultivadas
5.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L866-L872, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438574

RESUMO

Imatinib, a tyrosine kinase inhibitor, attenuates pulmonary edema and inflammation in lung injury. However, the physiological effects of this drug and their impact on outcomes are poorly characterized. Using serial computed tomography (CT), we tested the hypothesis that imatinib reduces injury severity and improves survival in ventilated rats. Hydrochloric acid (HCl) was instilled in the trachea (pH 1.5, 2.5 mL/kg) of anesthetized, intubated supine rats. Animals were randomized (n = 17 each group) to receive intraperitoneal imatinib or vehicle immediately prior to HCl. All rats then received mechanical ventilation. CT was performed hourly for 4 h. Images were quantitatively analyzed to assess the progression of radiological abnormalities. Injury severity was confirmed via hourly blood gases, serum biomarkers, bronchoalveolar lavage (BAL), and histopathology. Serial blood drug levels were measured in a subset of rats. Imatinib reduced mortality while delaying functional and radiological injury progression: out of 17 rats per condition, 2 control vs. 8 imatinib-treated rats survived until the end of the experiment (P = 0.02). Imatinib attenuated edema after lung injury (P < 0.05), and survival time in both groups was negatively correlated with increased lung mass (R2 = 0.70) as well as other physiological and CT parameters. Capillary leak (BAL protein concentration) was significantly lower in the treated group (P = 0.04). Peak drug concentration was reached after 70 min, and the drug half-life was 150 min. Imatinib decreased both mortality and lung injury severity in mechanically ventilated rats. Pharmacological inhibition of edema could be used during mechanical ventilation to improve the severity and outcome of lung injury.


Assuntos
Lesão Pulmonar , Edema Pulmonar , Animais , Ácido Clorídrico , Mesilato de Imatinib/farmacologia , Pulmão/patologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Edema Pulmonar/patologia , Ratos , Respiração Artificial
6.
Radiol Imaging Cancer ; 4(1): e210070, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089089

RESUMO

Fluorine 18 (18F) fluorthanatrace (18F-FTT) is a PET radiotracer for imaging poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1), an important target for a class of drugs known as PARP inhibitors, or PARPi. This article describes the stepwise development of this radiotracer from its design and preclinical evaluation to the first-in-human imaging studies and the initial validation of 18F-FTT as an imaging-based biomarker for measuring PARP-1 expression levels in patients with breast and ovarian cancer. A detailed discussion on the preparation and submission of an exploratory investigational new drug application to the Food and Drug Administration is also provided. Additionally, this review highlights the need and future plans for identifying a commercialization strategy to overcome the major financial barriers that exist when conducting the multicenter clinical trials needed for approval in the new drug application process. The goal of this article is to provide a road map that scientists and clinicians can follow for the successful clinical translation of a PET radiotracer developed in an academic setting. Keywords: Molecular Imaging-Cancer, PET, Breast, Genital/Reproductive, Chemistry, Radiotracer Development, PARPi, 18F-FTT, Investigational New Drug © RSNA, 2022.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Feminino , Humanos , Estudos Multicêntricos como Assunto , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Estados Unidos
7.
J Nucl Med ; 63(1): 44-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33863820

RESUMO

The poly-(adenosine diphosphate-ribose) polymerase (PARP) family of proteins participates in numerous functions, most notably the DNA damage response. Cancer vulnerability to DNA damage has led to development of several PARP inhibitors (PARPi). This class of drugs has demonstrated therapeutic efficacy in ovarian, breast, and prostate cancers, but with variable response. Consequently, clinics need to select patients likely to benefit from these targeted therapies. In vivo imaging of 18F-fluorthanatrace uptake has been shown to correspond to PARP-1 expression in tissue. This study characterized the pharmacokinetics of 18F-fluorthanatrace and tested kinetic and static models to guide metric selection in future studies assessing 18F-fluorthanatrace as a biomarker of response to PARPi therapy. Methods: Fourteen prospectively enrolled ovarian cancer patients were injected with 18F-fluorthanatrace and imaged dynamically for 60 min after injection followed by up to 2 whole-body scans, with venous blood activity and metabolite measurements. SUVmax and SUVpeak were extracted from dynamic images and whole-body scans. Kinetic parameter estimates and SUVs were assessed for correlations with tissue PARP-1 immunofluorescence (n = 7). Simulations of population kinetic parameters enabled estimation of measurement bias and precision in parameter estimates. Results:18F-fluorthanatrace blood clearance was variable, but labeled metabolite profiles were similar across patients, supporting use of a population parent fraction curve. The total distribution volume from a reversible 2-tissue-compartment model and Logan reference tissue distribution volume ratio (DVR) from the first hour of PET acquisition correlated with tumor PARP-1 expression by immunofluorescence (r = 0.76 and 0.83, respectively; P < 0.05). DVR bias and precision estimates were 6.4% and 29.1%, respectively. SUVmax and SUVpeak acquired from images with midpoints of 57.5, 110 ± 3, and 199 ± 4 min highly correlated with PARP-1 expression (mean ± SD, r ≥ 0.79; P < 0.05). Conclusion: Tumor SUVmax and SUVpeak at 55-60 min after injection and later and DVR from at least 60 min appear to be robust noninvasive measures of PARP-1 binding. 18F-fluorthanatrace uptake in ovarian cancer was best described by models of reversible binding. However, pharmacokinetic patterns of tracer uptake were somewhat variable, especially at later time points.


Assuntos
Tomografia por Emissão de Pósitrons
8.
ACS Pharmacol Transl Sci ; 4(1): 344-351, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33615184

RESUMO

We have previously demonstrated potent antitumor effects of PARP targeted alpha-therapy with astatine-211-MM4 ([211At]MM4) in neuroblastoma preclinical models, although differential sensitivity suggests it is unlikely to be curative as a single-agent in all tumor types. Alpha-particle induced DNA damage can elicit an immune response that results in T-cell activation against tumor cells; however, tumor cells can evade immune surveillance through expression of programmed death ligand 1 (PD-L1). Therefore, we investigated the effects of α particle therapy in combination with immune-checkpoint blockade using astatine-211-MM4 and anti-programmed death receptor 1 (anti-PD-1) immunotherapy in a syngeneic mouse model of glioblastoma. We characterized the sensitivity of four human glioblastoma cell lines to [211At]MM4 in vitro. To evaluate [211At]MM4 treatment effects on hematological tissues, complete blood counts were performed after a single dose at 12, 24, or 36 MBq/kg. In vivo efficacy was evaluated in a syngeneic mouse model of glioblastoma using GL26 glioblastoma cells in CB57BL/6J mice treated with either 36 MBq/kg [211At]MM4, anti-PD-1 antibody, or a combination of the two. Following a single dose of [211At]MM4, lymphocytes are significantly decreased compared to control at both 72 h and 1 week following treatment followed by recovery of counts by 2 weeks. However, neutrophils showed an increase with all dose levels of [211At]MM4 exhibiting higher levels than control. The average best tumor responses for combination, anti-PD-1, and [211At]MM4 were 100%, 83.6%, and 58.2% decrease in tumor volume, respectively. Average progression free intervals for combination, anti-PD-1, [211At]MM4, and control groups was 65, 36.4, 23.2, and 3 days, respectively. The percentages of disease-free mice at the end of the study for combination and anti-PD-1 were 100% and 60%, while [211At]MM4 and control groups were both 0%. In summary, combination therapy was more effective than either single agent in all response categories analyzed, highlighting the potential for PARP targeted alpha-therapy to enhance PD-1 immune-checkpoint blockade.

9.
J Nucl Med ; 62(6): 765-770, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33579802

RESUMO

The genetic code to life is balanced on a string of DNA that is under constant metabolic and physical stress from environmental forces. Nearly all diseases have a genetic component caused by or resulting in DNA damage that alters biology to drive pathogenesis. Recent advancements in DNA repair biology have led to the development of imaging tools that target DNA damage response and repair proteins. PET has been used for early detection of oncogenic processes and monitoring of tumor response to chemotherapeutics that target the DNA repair machinery. In the field of precision medicine, imaging tools provide a unique opportunity for patient stratification by directly measuring drug target expression or monitoring therapy to identify early responders. This overview discusses the state of the art on molecular imaging of DNA damage and repair from the past 5 years, with an emphasis on poly[adenosine diphosphate ribose]polymerase-1 as an imaging target and predictive biomarker of response to therapy.


Assuntos
Imagem Molecular/métodos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Dano ao DNA , Reparo do DNA , Humanos
10.
Molecules ; 25(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352773

RESUMO

Theranostics are emerging as a pillar of cancer therapy that enable the use of single molecule constructs for diagnostic and therapeutic application. As poly adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) is overexpressed in various cancer types, and is localized to the nucleus, PARP-1 can be safely targeted with Auger emitters to induce DNA damage in tumors. Here, we investigated a radioiodinated PARP inhibitor, [125I]KX1, and show drug target specific DNA damage and subsequent killing of BRCA1 and non-BRCA mutant ovarian cancer cells at sub-pharmacological concentrations several orders of magnitude lower than traditional PARP inhibitors. Furthermore, we demonstrated that viable tumor tissue from ovarian cancer patients can be used to screen tumor radiosensitivity ex-vivo, enabling the direct assessment of therapeutic efficacy. Finally, we showed tumors can be imaged by single-photon computed tomography (SPECT) with PARP theranostic, [123I]KX1, in a human ovarian cancer xenograft mouse model. These data support the utility of PARP-1 targeted radiopharmaceutical therapy as a theranostic option for PARP-1 overexpressing ovarian cancers.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Radioisótopos do Iodo/farmacologia , Camundongos SCID
11.
J Nucl Med ; 61(6): 850-856, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31676730

RESUMO

The currently available therapeutic radiopharmaceutical for high-risk neuroblastoma, 131I-metaiodobenzylguanidine, is ineffective at targeting micrometastases because of the low-linear-energy-transfer (LET) properties of high-energy ß-particles. In contrast, Auger radiation has high-LET properties with nanometer ranges in tissue, efficiently causing DNA damage when emitted near DNA. The aim of this study was to evaluate the cytotoxicity of targeted Auger therapy in preclinical models of high-risk neuroblastoma. Methods: We used a radiolabled poly(adenosine diphosphate ribose) polymerase (PARP) inhibitor called 125I-KX1 to deliver Auger radiation to PARP-1, a chromatin-binding enzyme overexpressed in neuroblastoma. The in vitro cytotoxicity of 125I-KX1 was assessed in 19 neuroblastoma cell lines, followed by in-depth pharmacologic analysis in a sensitive and resistant pair of cell lines. Immunofluorescence microscopy was used to characterize 125I-KX1-induced DNA damage. Finally, in vitro and in vivo microdosimetry was modeled from experimentally derived pharmacologic variables. Results:125I-KX1 was highly cytotoxic in vitro across a panel of neuroblastoma cell lines, directly causing double-strand DNA breaks. On the basis of subcellular dosimetry, 125I-KX1 was approximately twice as effective as 131I-KX1, whereas cytoplasmic 125I-metaiodobenzylguanidine demonstrated low biological effectiveness. Despite the ability to deliver a focused radiation dose to the cell nuclei, 125I-KX1 remained less effective than its α-emitting analog 211At-MM4 and required significantly higher activity for equivalent in vivo efficacy based on tumor microdosimetry. Conclusion: Chromatin-targeted Auger therapy is lethal to high-risk neuroblastoma cells and has the potential to be used in micrometastatic disease. This study provides the first evidence for cellular lethality from a PARP-1-targeted Auger emitter, calling for further investigation into targeted Auger therapy.


Assuntos
Elétrons/uso terapêutico , Neuroblastoma/radioterapia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Radioisótopos do Iodo , Transferência Linear de Energia , Microscopia de Fluorescência , Neuroblastoma/patologia , Doses de Radiação , Eficiência Biológica Relativa
12.
Nucl Med Biol ; 80-81: 32-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31575457

RESUMO

INTRODUCTION: The radioisotopes of bromine are uniquely suitable radiolabels for small molecule theranostic radiopharmaceuticals but are of limited availability due to production challenges. Significantly improved methods were developed for the production and radiochemical isolation of clinical quality 76Br, 77Br, and 80mBr. The radiochemical quality of the radiobromine produced using these methods was tested through the synthesis of a novel 77Br-labeled inhibitor of poly (ADP-ribose) polymerase-1 (PARP-1), a DNA damage response protein. METHODS: 76Br, 77Br, and 80mBr were produced in high radionuclidic purity via the proton irradiation of novel isotopically-enriched Co76Se, Co77Se, and Co80Se intermetallic targets, respectively. Radiobromine was isolated through thermal chromatographic distillation in a vertical furnace assembly. The 77Br-labeled PARP inhibitor was synthesized via copper-mediated aryl boronic ester radiobromination. RESULTS: Cyclotron production yields were 103 ±â€¯10 MBq∙µA-1∙h-1 for 76Br, 88 ±â€¯10 MBq∙µA-1∙h-1 for 80mBr at 16 MeV and 17 ±â€¯1 MBq∙µA-1∙h-1 for 77Br at 13 MeV. Radiobromide isolation yields were 76 ±â€¯11% in a small volume of aqueous solution. The synthesized 77Br-labeled PARP-1 inhibitor had a measured apparent molar activity up to 700 GBq/µmol at end of synthesis. CONCLUSIONS: A novel selenium alloy target enabled clinical-scale production of 76Br, 77Br, and 80mBr with high apparent molar activities, which was used to for the production of a new 77Br-labeled inhibitor of PARP-1. ADVANCES IN KNOWLEDGE: New methods for the cyclotron production and isolation of radiobromine improved the production capacity of 77Br by a factor of three and 76Br by a factor of six compared with previous methods. IMPLICATIONS FOR PATIENT CARE: Preclinical translational research of 77Br-based Auger electron radiotherapeutics, such as those targeting PARP-1, will require the production of GBq-scale 77Br, which necessitates next-generation, high-yielding, isotopically-enriched cyclotron targets, such as the novel intermetallic Co77Se.


Assuntos
Radioisótopos de Bromo/química , Ciclotrons , Radioquímica/instrumentação , Indóis/química , Marcação por Isótopo
13.
Biochem Biophys Res Commun ; 516(2): 397-401, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221481

RESUMO

Reactive oxygen species (ROS) are believed to play an important role in the proinflammatory form of neuroinflammation. Therefore, the availability of a radiotracer labeled with a positron-emitting radionuclide that can measure levels of ROS in tissue could provide a valuable method for imaging neuroinflammation in vivo with the functional imaging technique positron emission tomography (PET). We previously reported the synthesis and in vivo evaluation of [18F]ROStrace, a radiotracer for imaging ROS in vivo with PET, in an LPS model of neuroinflammation. In the current study, we conducted additional validation studies aimed at determining the cellular localization of this radiotracer in the same model. Our results indicate that [18F]ROStrace is primarily localized in microglia/macrophages and neurons in LPS-treated animals, and provide further support in the use of this radiotracer as a PET-based probe for imaging the proinflammatory form of neuroinflammation.


Assuntos
Autorradiografia , Etídio/análogos & derivados , Radioisótopos de Flúor/metabolismo , Lipopolissacarídeos/farmacologia , Imagem Óptica , Espécies Reativas de Oxigênio/metabolismo , Animais , Anticorpos/metabolismo , Etídio/metabolismo , Feminino , Camundongos Endogâmicos BALB C
14.
Mol Cancer Ther ; 18(7): 1195-1204, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31072830

RESUMO

Alpha-emitters can be pharmacologically delivered for irradiation of single cancer cells, but cellular lethality could be further enhanced by targeting alpha-emitters directly to the nucleus. PARP-1 is a druggable protein in the nucleus that is overexpressed in neuroblastoma compared with normal tissues and is associated with decreased survival in high-risk patients. To exploit this, we have functionalized a PARP inhibitor (PARPi) with an alpha-emitter astatine-211. This approach offers enhanced cytotoxicity from conventional PARPis by not requiring enzymatic inhibition of PARP-1 to elicit DNA damage; instead, the alpha-particle directly induces multiple double-strand DNA breaks across the particle track. Here, we explored the efficacy of [211At]MM4 in multiple cancers and found neuroblastoma to be highly sensitive in vitro and in vivo Furthermore, alpha-particles delivered to neuroblastoma show antitumor effects and durable responses in a neuroblastoma xenograft model, especially when administered in a fractionated regimen. This work provides the preclinical proof of concept for an alpha-emitting drug conjugate that directly targets cancer chromatin as a therapeutic approach for neuroblastoma and perhaps other cancers.


Assuntos
Neuroblastoma/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Análise de Sobrevida
15.
Cell Death Discov ; 5: 58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701090

RESUMO

Sigma-2 receptors have been implicated in both tumor proliferation and neurodegenerative diseases. Recently the sigma-2 receptor was identified as transmembrane protein 97 (TMEM97). Progesterone receptor membrane component 1 (PGRMC1) was also recently reported to form a complex with TMEM97 and the low density lipoprotein (LDL) receptor, and this trimeric complex is responsible for the rapid internalization of LDL. Sigma-2 receptor ligands with various structures have been shown to induce cell death in cancer cells. In the current study, we examined the role of TMEM97 and PGRMC1 in mediating sigma-2 ligand-induced cell death. Cell viability and caspase-3 assays were performed in control, TMEM97 knockout (KO), PGRMC1 KO, and TMEM97/PGRMC1 double KO cell lines treated with several sigma-2 ligands. The data showed that knockout of TMEM97, PGRMC1, or both did not affect the concentrations of sigma-2 ligands that induced 50% of cell death (EC50), suggesting that cytotoxic effects of these compounds are not mediated by TMEM97 or PGRMC1. Sigma-1 receptor ligands, (+)-pentazocine and NE-100, did not block sigma-2 ligand cytotoxicity, suggesting that sigma-1 receptor was not responsible for sigma-2 ligand cytotoxicity. We also examined whether the alternative, residual binding site (RBS) of 1,3-Di-o-tolylguanidine (DTG) could be responsible for sigma-2 ligand cytotoxicity. Our data showed that the binding affinities (K i) of sigma-2 ligands on the DTG RBS did not correlate with the cytotoxicity potency (EC50) of these ligands, suggesting that the DTG RBS was not fully responsible for sigma-2 ligand cytotoxicity. In addition, we showed that knocking out TMEM97, PGRMC1, or both reduced the initial internalization rate of a sigma-2 fluorescent ligand, SW120. However, concentrations of internalized SW120 became identical later in the control and knockout cells. These data suggest that the initial internalization process of sigma-2 ligands does not appear to mediate the cell-killing effect of sigma-2 ligands. In summary, we have provided evidence that sigma-2 receptor/TMEM97 and PGRMC1 do not mediate sigma-2 ligand cytotoxicity. Our work will facilitate elucidating mechanisms of sigma-2 ligand cytotoxicity.

16.
Clin Cancer Res ; 25(10): 3063-3073, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692100

RESUMO

PURPOSE: Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors in combination with endocrine-therapy have emerged as an important regimen of care for estrogen receptor (ER)-positive metastatic breast cancer, although identifying predictive biomarkers remains a challenge. We assessed the ability of two PET-proliferation tracers, [18F]FLT and [18F]ISO-1, for evaluating response to CDK4/6-inhibitor (palbociclib) and ER-antagonist (fulvestrant). EXPERIMENTAL DESIGN: To determine the effect of CDK4/6 inhibition combined with estrogen-blockade, we assessed cell proliferation in six breast cancer cell lines after 1, 3, and 6 days of treatment with palbociclib and/or fulvestrant. These data were correlated to in vitro radiotracer assays and results were verified by longitudinal [18F]FLT and [18F]ISO-1 micro-PET imaging performed in MCF7 tumor-bearing mice. RESULTS: All palbociclib-sensitive cell lines showed decreased [18F]FLT accumulation and S-phase depletion after treatment, with both measures augmented by combination therapy. In contrast, these cells showed changes in [18F]ISO-1 analogue-binding and G0 arrest only after prolonged treatment. MicroPET imaging of MCF7 xenografts showed a significant decrease in [18F]FLT but no changes in [18F]ISO-1 uptake in all treated mice on day 3. On day 14, however, mice treated with combination therapy showed a significant decrease in [18F]ISO-1, corresponding to G0 arrest, while maintaining reduced [18F]FLT uptake, which corresponded to S-phase depletion. CONCLUSIONS: Our data suggest complementary roles of [18F]FLT and [18F]ISO-1 PET in evaluating tumor-proliferation after combined CDK4/6 inhibitor and endocrine therapy in breast cancer. [18F]FLT is more sensitive to immediate changes in S-phase, whereas [18F]ISO-1 can assess more delayed changes related to cell-cycle arrest and transition to G0 quiescence from combination therapy. These data suggest a potential role for early prediction of long-term response using these imaging biomarkers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Didesoxinucleosídeos , Antagonistas do Receptor de Estrogênio/administração & dosagem , Feminino , Radioisótopos de Flúor , Fulvestranto/administração & dosagem , Humanos , Estudos Longitudinais , Células MCF-7 , Camundongos , Camundongos SCID , Piperazinas/administração & dosagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Piridinas/administração & dosagem , Compostos Radiofarmacêuticos , Distribuição Aleatória , Receptores de Estrogênio/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Bioorg Chem ; 83: 242-249, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390553

RESUMO

Poly(ADP-ribose)polymerase-1 inhibitor (PARPi) AZD2461 was designed to be a weak P-glycoprotein (P-gp) analogue of FDA approved olaparib. With this chemical property in mind, we utilized the AZD2461 ligand architecture to develop a CNS penetrant and PARP-1 selective imaging probe, in order to investigate PARP-1 mediated neuroinflammation and neurodegenerative diseases, such as Alzheimer's and Parkinson's. Our work led to the identification of several high-affinity PARPi, including AZD2461 congener 9e (PARP-1 IC50 = 3.9 ±â€¯1.2 nM), which was further evaluated as a potential 18F-PET brain imaging probe. However, despite the similar molecular scaffolds of 9e and AZD2461, our studies revealed non-appreciable brain-uptake of [18F]9e in non-human primates, suggesting AZD2461 to be non-CNS penetrant.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Ftalazinas/farmacologia , Piperidinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/agonistas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Radioisótopos de Flúor/química , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Ftalazinas/síntese química , Piperidinas/síntese química
18.
Sci Rep ; 8(1): 16845, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30443021

RESUMO

CRISPR/Cas gene studies were conducted in HeLa cells where either PGRMC1, TMEM97 or both proteins were removed via gene editing. A series of radioligand binding studies, confocal microscopy studies, and internalization of radiolabeled or fluorescently tagged LDL particles were then conducted in these cells. The results indicate that PGRMC1 knockout (KO) did not reduce the density of binding sites for the sigma-2 receptor (σ2R) radioligands, [125I]RHM-4 or [3H]DTG, but a reduction in the receptor affinity of both radioligands was observed. TMEM97 KO resulted in a complete loss of binding of [125I]RHM-4 and a significant reduction in binding of [3H]DTG. TMEM97 KO and PGRMC1 KO resulted in an equal reduction in the rate of uptake of fluorescently-tagged or 3H-labeled LDL, and knocking out both proteins did not result in a further rate of reduction of LDL uptake. Confocal microscopy and Proximity Ligation Assay studies indicated a clear co-localization of LDLR, PGRMC1 and TMEM97. These data indicate that the formation of a ternary complex of LDLR-PGRMC1-TMEM97 is necessary for the rapid internalization of LDL by LDLR.


Assuntos
Endocitose , Proteínas de Membrana/metabolismo , Receptores de LDL/metabolismo , Receptores de Progesterona/metabolismo , Receptores sigma/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Células HeLa , Humanos , Insulina/metabolismo , Ligantes , Ligação Proteica , Somatostatina/metabolismo
19.
ACS Omega ; 3(8): 9997-10001, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30198004

RESUMO

Poly(ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics with enhanced selectivity and cytotoxicity in BRCA1/2 mutant cancer cells. AZD2461, a congener of FDA approved olaparib, is a potent PARPi with high affinity for PARP-1 and nonsubstrate for P-glycoprotein (P-gp), an attractive characteristic for cancer therapeutics. Analogues of AZD2461 were synthesized and profiled in BRCA1 functional and nonfunctional cell lines, revealing compounds (2, 3, and 5) of low cytotoxicity and excellent PARP-1 affinities (∼4-8 nM). In comparison to AZD2461, these agents were found to be less stimulating of P-gp, suggesting that these compounds may be excellent candidates for neurological applications where blood brain barrier penetrance is sought.

20.
J Med Chem ; 61(12): 5367-5379, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29856625

RESUMO

Development of poly(ADP-ribose) polymerase inhibitors (PARPi's) continues to be an attractive area of research due to synthetic lethality in DNA repair deficient cancers; however, PARPi's also have potential as therapeutics to prevent harmful inflammation. We investigated the pharmacological impact of incorporating spirodiamine motifs into the phthalazine architecture of FDA approved PARPi olaparib. Synthesized analogues were screened for PARP-1 affinity, enzyme specificity, catalytic inhibition, DNA damage, and cytotoxicity. This work led to the identification of 10e (12.6 ± 1.1 nM), which did not induce DNA damage at similar drug concentrations as olaparib. Interestingly, several worst in class compounds with low PARP-1 affinity, including 15b (4397 ± 1.1 nM), induced DNA damage at micromolar concentrations, which can explain the cytotoxicity observed in vitro. This work provides further evidence that high affinity PARPi's can be developed without DNA damaging properties offering potential new drugs for treating inflammatory related diseases.


Assuntos
Dano ao DNA/efeitos dos fármacos , Ftalazinas/química , Piperazina/química , Piperazinas/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Proteína BRCA1/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Fibroblastos , Humanos , Camundongos Knockout , Simulação de Acoplamento Molecular , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...